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Abstract. The ab initio mixed-basis pseudopotential method based on the density-functional
theory is applied to study the cohesion, ferromagnetism and electronic structure of iron and iron
monohydride with cubic crystal structures. Spin-unpolarized and spin-polarized calculations are
used to assess the transferability of norm-conserving ionic pseudopotentials for iron, and the level
of accuracy obtainable for structural equations of state with reasonable effort. The influence
of generalized gradient corrections on the cohesive properties is investigated. The results are
compared directly to corresponding all-electron results obtained by using both FLAPW and
LMTO–ASA methods.

1. Introduction

To give a quantitatively accurate description of the interaction of light particles like hydrogen
isotopes, which are distributed over interstitial sites in transition-metal lattices, with the host-
metal atoms, theab initio total-energy methods based on the density-functional theory [1]
in the local density approximation [2] have been found to be very useful and reliable (see,
e.g., chapter 5 in reference [3] or chapter 6 in reference [4]).

Among others things, previousab initio studies concerned with metal–hydrogen systems
have given a detailed explanation of the nature of vibrational states of hydrogen isotopes in
the 4d transition metals niobium [5, 6] and palladium [7, 8], emphasizing the importance
of the anisotropy and the anharmonicity of the corresponding vibrational potentials.

In the present work, which consists of three parts, we systematically continue and extend
ourab initio study of metal–hydrogen systems to hydrides of 3d transition metals [9], namely
body-centred cubic (bcc)α-Fe and Cr, and face-centred cubic (fcc)γ -Fe and Ni. The main
focus will be on the Fe–H system for several reasons, detailed below.

There is considerable technological and scientific interest in obtaining an understanding
of the interaction of hydrogen with iron because contact with H leads to drastic changes
in the mechanical properties ofα-Fe, such as serious embrittlement and corrosion of steel,
although pure bccα-Fe under ambient pressure is able to absorb only very small amounts
of H in the lattice interstices.

‖ Present address: Max-Planck-Institut für Metallforschung, Seestrasse 92, D-70174 Stuttgart, Germany.
¶ Present address: Lawrence Livermore National Laboratory, Livermore, CA 94551, USA.
+ Present address: Physics Department, Hong Kong University of Science and Technology, Clear Water Bay,
Hong Kong.

0953-8984/98/235081+31$19.50c© 1998 IOP Publishing Ltd 5081



5082 C Elsässer et al

On the other hand, high-pressure experiments motivated recently by geophysical studies
of the composition of the Earth’s inner core [10] have demonstrated that, under large
hydrostatic pressures of several gigapascals, the two-component system of pure iron and
pure hydrogen together in a diamond-anvil cell undergoes a structural phase transformation,
forming an almost stoichiometric high-concentration iron hydride compound FeH with a
close-packed crystal structure of the iron lattice.

In this paper (part I) we investigate the ability of our computational technique, the
mixed-basis pseudopotential method [11–14], to describe the structural properties and the
electronic structure of bcc and fcc Fe and FeH, including the possibility of a spontaneous
spin polarization within the spin-density-functional theory in the local approximation [15]
and considering non-local gradient corrections [16–20]. For non-magnetic materials, the
success of this method is already well established in the literature. For magnetic materials,
however, to our knowledge, there are only few previous pseudopotential studies, dealing
with magnetic pure iron. The first one [21], in the early eighties, yielded reasonable but,
compared to corresponding all-electron studies, not fully satisfactory results for bccα-Fe.
Recently, nine years later, it has been shown [22] that most of the deficiencies of the
early work can be overcome by employing the more powerful computational resources that
have become available in the meantime to increase the basis set and thus the accuracy
of the results. Further work addressed the accurate description of ferromagnetic iron by
pseudopotentials together with a plane-wave basis [23] or a LAPW basis [24]. Anab initio
molecular dynamics calculation of iron using an orthonormalized-mixed-basis approach is
reported in reference [25]. In the present work, besides the extension to iron–hydrogen
systems, we carefully re-examine the calculation of structural and magnetic properties of
pure iron.

In the second paper (part II [26]) the structural and magnetic properties of close-packed
Fe and FeH, namely the hexagonal close-packed (hcp, with a stacking sequence ABAB of
close-packed atom planes), double-hcp (dhcp, ABACABAC) and fcc (ABCABC) forms,
are discussed and compared to the recent high-pressure experiments [10].

The third paper (part III [27]) is concerned with the discussion of vibrational states
and the related adiabatic metal–hydrogen potentials of hydrogen isotopes in two bcc metal
hydrides,α-FeH and CrH, and in two fcc metal hydrides,γ -FeH and NiH. These systems
illuminate some systematic trends for the characteristic behaviour of vibrational H states
when the host metal varies within the transition-metal rows of the periodic table of elements.
Furthermore, the influence of magnetism on the vibrational states is discussed. The results
of this part form theab initio database used in our recent study of self-trapped states of H
isotopes in Fe [28].

2. Computational techniques

In this section, we outline the computational techniques used for theab initio calculations
in all three parts of our present work.

2.1. The mixed basis

The present work is based on the mixed-basis pseudopotential method [11–14] (in the
following abbreviated as the MBPP method). It combines the merits ofab initio pseudo-
potentials and plane waves, known to be a very successfulab initio density-functional
method for the calculation of many properties of simple metals, semiconductors and
compounds (see, e.g., references [29, 30]), with the ability to describe transition-metal
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electron states by including a few localized, atomic-orbital-like functions additionally to the
plane waves in a mixed basis set.

For the 3d transition metals and their hydrides, the mixed basis contains approximately
150 plane waves per metal atom, limited byEpw = |k+G|2max= 24 Ryd (k is a wavevector
in the first Brillouin zone,G is a translation vector of the reciprocal lattice), five local orbitals
with d symmetry (l = 2) per metal atom, and one local orbital with s symmetry (l = 0)
per H atom. (The atomic rydberg unit is used for energies; 1 Ryd= 13.606 eV.) A local
orbital is constructed from an atomic pseudowavefunction by smoothly cutting off the tail
beyond a certain cut-off radiusrcj around thej th atomic site. This cut-off is effected either
by multiplying the radial part of the wavefunction with a Gaussian function centred at the
cut-off radius and varying the Gaussian width parameterγj to minimize the energy (see
[13]), or by using a spherical Bessel functionAjl(Br), whose two parametersA andB are
determined by matching the function in value and slope to the atomic pseudowavefunction
at rcj , and taking the difference between the wavefunction and the Bessel function for
r 6 rcj as the local orbital. The advantage of the second cut-off procedure turns out to
be that it does not contain a further parameter to be optimized, and, for the d states, the
shapes of the local orbitals obtained in this way are very close to the local orbitals cut off
with the Gaussian of optimized width. To allow the crystals’ volumes to be changed around
the equilibrium value and the position of H in the transition metal to be varied within
a sufficiently large portion of the interstitial space to map out the adiabatic vibrational
potentials (see part III), the radiircj are chosen to be smaller than touching muffin-tin radii,
rc,Fe= 2.15 Bohr andrc,H = 0.7 Bohr. (1 Bohr = 0.529̊A is the atomic length unit.) An
increase ofEpw subsequently up to 48 Ryd shows that the total-energy differences between
different crystalline structures (e.g., bcc and fcc) are converged to better than 0.1 mRyd by
the mixed basis forEpw = 24 Ryd.

2.2. The total-energy calculations

The structural properties are obtained from differences of density-functional total energies
which are calculated employing a momentum-space formalism [31, 32]. The exchange–
correlation contribution to the total energy in the local density approximation [2] (LDA)
is calculated via a real-space integral. The electron densities needed for total energies are
computed in a mixed representation in real and in Fourier space [13], and finally given on
a large mesh suitable for fast Fourier transformations (FFT), enclosing plane waves up to
wavevectors with lengths less than|G|2max. The gradients of the electron densities used for
the non-local gradient corrections to the exchange–correlation contribution are calculated in
Fourier space and obtained in real space via FFT. The accuracy of the Fourier representation
of densities, potentials and total energies is monitored by increasing the number of Fourier
components successively up to|G|2max= 1600 Ryd. The total-energy differences are found
to be converged to better than 0.1 mRyd for|G|2max= 625 Ryd.

For the summation of eigenvalues over the first Brillouin zone, equivalent sets of special
Chadi–Cohenk-points [33, 34] for the different crystal structures and a Gaussian broadening
with a width of 0.004 Ryd to mimic the Fermi surface [12, 35] were used. The use
of equivalent sets ofk-points, i.e. thek-points for different lattices can be mapped onto
each other by symmetry operations, should ensure the best possible cancellation of errors
in the discrete summations over the Brillouin zones. For the bcc and fcc structures, in
particular, 40 and 60 specialk-points, respectively, in the irreducible part of the Brillouin
zone (corresponding to 20 in the irreducible zone or 83 = 512k-points in the whole Brillouin
zone of a simple cubic (sc) Bravais lattice with a ‘length cut-off’ [34]:(2lcut/a0)

2 = 64)



5084 C Elsässer et al

were found to give total-energy differences again converged to within 0.1 mRyd for both the
spin-unpolarized and spin-polarized cases, as tests with specialk-points corresponding to
those of sc 123- and 163-meshes confirmed. For the spin-unpolarized bcc and fcc structures
even just 8 and 10 irreduciblek-points ('43 sc points), respectively, turned out to be enough
to give reasonably accurate results for cohesive properties like the equilibrium volumeV0

and the bulk modulusB0.

2.3. The ionic pseudopotentials

In pseudopotential theory the influence of the atomic nuclei and the closed-shell core
electrons on the valence electrons is described by ionic pseudopotentials. For Fe, and for
Cr and Ni discussed in part III as well, we used ‘optimally smooth’, norm-conserving, non-
local pseudopotentials [36] including a non-linear partial-core correction for the exchange–
correlation contribution [37]. The atomic reference configuration for the construction of a
pseudopotential was chosen according to the occupation numbers of the angular-momentum-
decomposed partial charges within an atomic sphere in the elementary metal, which are
calculated self-consistently in the LDA using an all-electron LMTO–ASA method (see
below; very similar partial charges are obtained for bcc and fcc Fe): [Ar]3dν+0.64s0.64p0.8

with ν = 4, 6 and 8 for Cr, Fe and Ni, respectively. The comparison of the one-electron
eigenstates and excitation energies of the various atomic configurations, as obtained via
all-electron and pseudopotential LDA calculation, indicated that this choice of reference
configuration yielded a rather good transferability of the pseudopotential for spin-unpolarized
LDA and gradient-corrected calculations [9].

The spin-density functional, however, depends very sensitively on the core–valence
separation of the non-linear exchange–correlation energy and potential [37]. Therefore a
partial-core correction is crucially to be included in the pseudopotential for the treatment
of spin-polarized systems. The partial core was cut off at a distance to the nucleus close
to the density maximum of the outermost core states, containing essentially the 3s and 3p
core states of the 3d transition metals.

The influences of the partial-core correction and the choice of the atomic reference con-
figuration for the construction of a ionic pseudopotential of iron are illustrated in appendix
A by means of a comparison of calculated spin-polarization energies and s–d transfer ener-
gies for a free iron atom. These results point to a basic problem inherent to the following
discussion of structural energy differences between spin-unpolarized and spin-polarized iron
crystals: the core–valence separation and the frozen-core approximation, fundamental to the
pseudopotential theory, already introduce noticeable deviations of the pseudopotential from
the all-electron (i.e. treating the core states explicitly and allowing them to relax as well)
results in the energy gain due to spin polarization, which can be as large as a few milliry-
dbergs. Consequently, we have to anticipate that similar deviations may occur as well for
structural energy differences between crystals with different lattice structures. Therefore,
in parallel with the pseudopotential calculations, we performed all-electron calculations for
the structural properties of Fe and FeH to assess the sensitivity of the calculated properties
of spin-polarized systems to the approximations in the pseudopotential theory.

For the interaction of the crystal electrons with the H nuclei, the protonic Coulomb
potential was used in the present work, part I, to ensure that local magnetic properties
like the spin density and the Fermi contact field at H sites are described accurately. As an
alternative a local, norm-conserving H pseudopotential [14] was used in the following parts,
II and III. For all of the structural and integral magnetic properties, the two potentials lead
to the same results.
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2.4. All-electron calculations

The two currently very popular standard all-electron methods were used: the full-potential
LAPW (FLAPW) method [38–40] and the LMTO method within the atomic sphere
approximation (LMTO–ASA) [38, 41].

The FLAPW method is known to describe very accurately structural properties of ideal
and distorted crystalline solids. Although there is the basic difference that all electrons
are treated explicitly, there are a lot of similarities between the FLAPW and the mixed-
basis formalisms, which make the results of the two methods suitable for close comparison.
Hence, we tried to choose the calculational FLAPW details as close as possible to the
mixed-basis parameters described above: thek-point meshes and the Gaussian broadening
are the same, the energy cut-off for the augmented plane waves,Eapw = 20 Ryd, was
chosen slightly smaller only for reasons of practical convenience without reducing the
accuracy of the total-energy differences significantly. The augmentation-sphere radius for
Fe was 2.15 Bohr. For H, however, a larger radius of 1.05 Bohr had to be chosen to
avoid convergence and accuracy problems encountered with a radius of 0.7 Bohr. This
detail is of some significance for part III of this work because the larger H radius would
limit considerably more the spatial range over which the adiabatic potential of the Fe–H
interaction could be mapped out using the FLAPW method with these chosen parameters.
For the comparison of the structural, magnetic and electronic properties of FeH, where H is
located at stable sites in the lattice interstices, in the present work, part I, the larger H-sphere
radius imposes no limitation.

In the LMTO–ASA method, the Wigner–Seitz cells around all atoms in the crystal are
replaced by overlapping atomic spheres of the same volumes (avoiding the treatment of
space outside touching muffin-tin spheres) and, within each sphere, the electron density and
the potential are approximated as being spherically symmetric. Furthermore, a minimal basis
of one linear muffin-tin orbital per atomic site and angular momentum component of the
valence states is used to represent the one-electron eigenstates. These two approximations
drastically reduce the computational effort involved in treating the electron band-structure
problem of crystals, and it turns out that the results for the cohesive and magnetic properties
for rather densely packed crystal structures like the cubic and hexagonal close-packed and
bcc lattices are satisfactorily accurate in many cases, as compared to full-potential results,
in spite of the finite overlap of the atomic spheres and the minimal basis. Both latter
approximations are improved by using the so-called combined correction in our calculations.

For the calculation of the cohesive properties of pure bcc and fcc Fe presented in
this work, part I, the LMTO basis contained s, p, d and f orbitals. For the Brillouin-zone
summations, special Monkhorst–Packk-point meshes [34, 42] and the improved tetrahedron
method [43] were used instead of special Chadi–Cohenk-points and Gaussian broadening
(just for computational convenience, not for physical reasons). A subdivision of the unit cells
of the reciprocal lattices into 103 microparallelepipeds with zero mesh-point displacements
was chosen, yielding 47k-points in the cubic irreducible Brillouin zones, which was found
to be sufficiently dense for total-energy differences reliable to about 1 mRyd.

2.5. Density-functional approximations

The basic assumption for all practical density-functional calculations lies in the
choice of an approximate functional for the exchange–correlation term in the total
energy. An extremely successful and thus standard choice is the local density approx-
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imation [2] (LDA):

ELDA
xc [ρe] =

∫
�

ρe(r)εxc(ρe(r)) d3r

whereεxc(ρe) is taken to be the exchange–correlation energy density of an interacting ho-
mogeneous electron gas with the densityρe.

In the MBPP calculations we apply the parametrization by Perdew and Zunger [44]
of the quantum Monte Carlo electron gas data of Ceperley and Alder [45] (denoted by
CA in the following). The FLAPW calculations were done using the interpolation formula
given by Hedin and Lundqvist [46]. In the LMTO–ASA calculations we used both LDA
functionals and found, as shown in the following sections, no significant differences for the
results for all structural quantities considered.

The generalization of the LDA for spin-polarized materials is the local spin-density
approximation [15] (LSDA):

ELSDA
xc [ρe, ρs] =

∫
�

ρe(r)εxc(ρe(r), ρs(r)) d3r

where εxc(ρe, ρs) is again taken from a spin-polarized interacting homogeneous electron
gas with the densityρe = ρ↑ + ρ↓ and the spin densityρs = ρ↑ − ρ↓ (ρ↑ andρ↓ are the
densities of up- and down-spin electrons). In all our calculations the spin-splitting effect in
εxc(ρe, ρs) is accounted for by theansatzof von Barth and Hedin [15]. The spin-polarized
formulae of Perdew and Zunger [44] and of von Barth and Hedin [15] (the latter, denoted
by BH, was used with the slightly modified parameters of Moruzziet al [47]) become the
same as the spin-unpolarized ones of Perdew and Zunger and of Hedin and Lundqvist for
vanishing spin polarization.

Although the LDA and LSDA have been empirically confirmed to be very successful
in the description and prediction of many materials’ properties (atoms, molecules and
condensed matter), there are several deficiencies remaining which cannot be described
satisfactorily in the local approximation. Particular examples are a serious underestimation
of the equilibrium volumes of alkali metals [48, 49] and a metallic ground state without an
energy gap for some antiferromagnetic transition-metal oxides [50, 51]. One strategy for
improving the local approximation, which has been developed and discussed extensively
over recent years, is the idea of a generalized gradient approximation (GGA) put forward
by Perdew and others, in which the description of the non-local functionalExc is improved
by replacingεxc(ρe) by functions which depend on the density and its spatial gradient as
well, and which are improvements over the original gradient expansion approximation in
that they reproduce several important electron gas properties by construction.

In this work, we used the following gradient-corrected (GC) functionals. The first one
is a combination of the GC exchange formula given by Perdew and Wang [18] with the GC
correlation formula given by Perdew [16, 17] (in the following called PW, also often denoted
as GGA or GGA-I in the literature). In the second one an exchange formula proposed by
Becke [19] is combined with Perdew’s correlation formula (in the following called BP).
The PW functional was used together with all three of our applied band-structure methods,
and the BP functional additionally just with the MBPP method.

Recently, Perdewet al proposed a new GGA functional [20, 48] (GGA-II or PW91)
which, however, is similar to the BP functional. This PW91 formula, in an original
implementation by its authors, was available in the WIEN93 FLAPW package [40]. Hence
this allowed us to make a direct comparison of the BP and the PW91 results, and to obtain
a confirmation of our own previous experience with GC functionals (see appendix C).
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3. Cohesive and magnetic properties of Fe

In this section, we compare the cohesive properties of iron in four different crystal states:
bcc α-Fe without spin polarization (non-magnetic, bcc NM) and with spin polarization
(ferromagnetic, bcc FM), and fccγ -Fe without spin polarization (fcc NM) and with spin
polarization (fcc FM). The results show the long-recognized deficiency of the LDA/LSDA
in favouring a close-packed, non-magnetic ground state [52–55], and the subsequent success
in resolving this by means of gradient corrections [56–58, 22]. More complicated features
such as antiferromagnetic [59–61] and non-collinear [62, 63] spin structures will not be
addressed here.

(In the following, for notational convenience, we often omit the separate specification
‘LSDA’ and denote both cases, spin-unpolarized and spin-polarized calculations in the
local approximation, simply by ‘LDA’, and by ‘GC LDA’ in the gradient-corrected
approximations.)

Figure 1. Equations of state of iron crystals calculated in the LDA/LSDA (CA) using the MBPP
method. The symbols mark theab initio data points. (a) The energy versus the volume. The
lines through the symbols show the fitted EOS of Roseet al [64, 65]. (b) The ferromagnetic
spin moment versus the volume.
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Figure 2. Equations of state of iron crystals calculated in the LDA/LSDA (BH) using the
FLAPW method. The symbols mark theab initio data points. (a) The energy versus the
volume. The lines through the symbols show the fitted EOS of Roseet al [64, 65]. (b) The
ferromagnetic spin moment versus the volume.

3.1. Energy–volume curves

The total energies of the crystals versus their unit-cell volumes are displayed in the
figures 1(a) to 4(a). Figures 1(a) and 2(a) show the LDA results forE(V ) obtained with the
MBPP method and the FLAPW method, respectively. Qualitatively they look very similar.
However, a quantitative inspection reveals small but noticeable differences. These can be
seen more clearly in table 1 where the cohesive parametersV0, E0, B0 andB ′, as derived
by fitting an analytic equation of state (EOS; see appendix B) given by Roseet al [64, 65]
to theab initio data, are listed.

Our LMTO–ASA, FLAPW and MBPP results can be considered to be in good agreement
with each other and, e.g., with the LMTO–ASA results given in [56, 57, 66, 67], the
FLAPW results in references [52, 53, 58, 68] and the pseudopotential results in references
[22, 23, 24], respectively, under the condition that the desired limit of accuracy for the
cohesive parameters is not more strict than a few millirydbergs for the structural energy
differences1E, a few tenths ofÅ3 or eV for V0 or E0, respectively, and a few tens of



Ab initio study of iron and iron hydride: I 5089

Figure 3. Equations of state of iron crystals calculated with the GC BP functional using the
MBPP method. The symbols mark theab initio data points. (a) The energy versus the volume.
The lines through the symbols show the fitted EOS of Roseet al [64, 65]. (b) The volume
dependence of1EBP

xc .

gigapascals forB0.
Our experience in carrying out the present comparative calculations leads us to predict

that achieving a stricter accuracy limit would be onerous, mainly because of the remaining
arbitrariness as regards the choice of the number and volume range of theab initio E(V )
data used to fit an EOS, and the choice of the model EOS itself, and finally the accurate and
unique choice for the free-atom reference energy. These technical variabilities, as discussed
in appendix B, allow for changes in the cohesive properties within the limits stated above.

One consequence which we derive from this limitation is that calculations of pressures
for structural transitions, which can easily be obtained from any analytic model equation
of state, e.g. by common-tangent construction for energy–volume curves or crossing points
of enthalpy–pressure curves for two different solid states (where the pressure is given by
p(V ) = −dE/dV , and the enthalpy byH = E + pV ), should be examined cautiously as
regards their predictive powers.

For materials containing only one atomic species, such as iron, uncertainties within
the limits mentioned above may invoke an uncertainty of several gigapascals in structural
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Figure 4. Equations of state of iron crystals calculated with the GC PW91 functional using
the FLAPW method. The symbols mark theab initio data points. (a) The energy versus the
volume. The lines through the symbols show the fitted EOS of Roseet al [64, 65]. (b) The
volume dependence of1EPW91

xc .

transition pressures. This can easily be envisaged by means of a simple second-order-
polynomial EOS (as was done in a preliminary report of our work [69]).

For materials containing more than one atomic species, such as iron hydride, the
uncertainties in the transition pressures, such as in the formation of close-packed FeH from
bcc Fe and liquid hydrogen (see part II), are even larger, because here the cohesive energies
E0 of all contributing species, which are (besides their well-known systematic overestimation
in the LDA) also rather difficult to obtain with the same and sufficient accuracies, are crucial
in the calculation if one is to obtain all of the energies of the different species with respect
to a common zero level.

All of these findings discouraged us from trying any more to derive pressures for
structural transitions in the Fe and FeH systems, since no method has been found for
obtaining cohesive properties and EOS to a higher level of accuracy for transition metals
like iron (although there has been success in the cases of simple metals and covalent
semiconductors) than is provided by the present state-of-the-art total-energy methods in the
LDA or including gradient corrections.
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Table 1. The cohesive parametersV0, E0, B0 andB ′ of non-magnetic (NM) and ferromagnetic
(FM) iron with face-centred cubic (fcc) and body-centred cubic (bcc) crystal structure;1E is
the energy difference with respect to bcc FM Fe;δE is the energy difference of bcc Fe with
respect to fcc Fe in the same magnetic state.

fcc bcc
Spin

xc polari- V0 E0 B0 B ′ 1E V0 E0 B0 B ′ 1E δE

functional zation (̊A3) (eV) (GPa) (mRyd) (̊A3) (eV) (GPa) (mRyd) (mRyd)

MBPP

LDA CA NM 9.85 6.33 321 4.5 −1 10.06 6.00 314 4.6 23 24
FM 11.13 6.16 200 4.0 12 10.80 6.31 199 3.9 0 −12

BP NM 10.59 4.64 255 4.8 18 10.80 4.34 248 4.9 40 22
FM 12.26 4.78 139 4.0 8 12.07 4.89 150 4.0 0 −8

PW NM 10.95 4.40 240 4.9 20 11.15 4.12 233 5.0 41 21
FM 12.69 4.56 141 4.1 8 12.45 4.67 146 4.1 0 −8

FLAPW

LDA BH NM 9.70 6.34 343 4.6 −4 9.91 5.98 324 4.7 22 26
FM 10.89 6.08 197 4.0 15 10.58 6.29 243 4.2 0 −15

PW91 NM 10.31 4.96 283 4.8 11 10.54 4.64 270 4.9 34 23
FM 12.01 4.96 163 4.1 9 11.49 5.11 180 4.2 0 −11

PW NM 10.62 4.04 261 5.1 11 10.84 3.74 249 5.2 33 22
FM 12.33 4.03 165 4.5 12 11.73 4.19 188 4.6 0 −12

LMTO–ASA

LDA CA NM 9.74 6.70 347 4.5 −4 9.98 6.36 327 4.6 21 25
FM 11.11 6.43 214 4.0 16 10.64 6.65 251 4.2 0 −16

LDA BH NM 9.77 6.67 345 4.6 −3 10.01 6.33 325 4.6 21 24
FM 11.14 6.41 211 4.0 16 10.67 6.62 250 4.2 0 −16

PW NM 10.70 4.76 271 4.9 14 10.98 4.46 253 4.9 36 22
FM 12.52 4.82 166 4.3 9 12.11 4.95 147 4.0 0 −9

Experiment [95, 96]

NM 12.06 — 133 — — — — — — — —
FM — — — — — 11.82 4.28 168 — — —

(We are aware of, e.g., the recentab initio PW91 results on structural transition pressures
in iron obtained by Stixrudeet al [68] which are quoted as being in excellent agreement
with experiment, but from our own experience discussed above we remain to some extent
sceptical as regards the absolute reliability of this positive conclusion.)

In figures 3(a) and 4(a), ourE(V ) results for Fe obtained with the MBPP method and
the BP functional on one hand and with the FLAPW method and the PW91 functional
on the other hand are displayed. (As mentioned above, the BP and PW91 functionals are
mathematically rather similar and making a direct comparison of results obtained by the
two total-energy methods using each one of these functionals is hence as justified as making
a comparison using the older PW functional in the two methods, which leads to the same
conclusion as the following discussion.)

The effect of the gradient corrections can be understood as a systematic expansion of
the equilibrium volume, as compared to that of the LDAE(V ) curves in figures 1(a) and
2(a), connected with a crystal-softening decrease in the bulk modulus. The self-consistent
total-energy differences between the curves in figures 1(a) and 3(a), and in figures 2(a) and
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4(a) are given to a high accuracy by the total-energy contribution1EGC
xc [ρe] due to the

gradient correction. The self-consistent densitiesρe in the LDA and in the GC LDA turn
out to be so similar that in most casesρLDA

e can be used to calculate1EGC
xc with sufficient

accuracy, hence saving the additional effort that would otherwise be required to obtainρGC
e

self-consistently.
The quantity1EGC

xc [ρLDA
e ] versusV in the MBPP calculations is plotted in figure 3(b).

Figure 4(b) shows the actual self-consistent GC LDA total-energy differences of the FLAPW
calculations (with the BH formula in the LDA and with the CG PW91 formula, whose local
part is again based on the Ceperley–Alder electron gas data). The slopes and curvatures
of the curves in the two figures are remarkably similar over the whole total-energy range
plotted. This result demonstrates the ability of the MBPP method to calculate GC total
energies for transition metals like iron, provided, however, that the partial core used in
the non-linear xc core correction has been chosen judiciously, e.g. in the way discussed in
appendix A, to include the outermost core electrons (by means of making the correction
PC2 in the present case).

For other partial-core choices, the1EGC
xc (V ) curves may look very different, for example

having a small slope only in the case of no core correction at all, or already a noticeably too
steep slope, compared to the FLAPW result, for the correction PC3. Therefore we conclude
that the particular choice of PC2, replacing the total-core density by a spherical Bessel
function inside the outermost core density maximum, is quite justified and is essential for
the success of pseudopotential calculations including gradient corrections. (Practical choices
for the cut-off radius, which are equally well suited in the cases that we considered, are
between the positions of the outermost core density maximum itself and of the turning
point next to it towards the inner core.) An alternative is of course the inclusion of
the full-core density for the non-linear xc correction, as proposed recently by Cho and
Scheffler [24]. This, however, required the use of a LAPW basis with its angular momentum
representation of the strongly varying full-core density within the ionic core region. This is
computationally more complicated than a plane-wave basis or, still, the mixed basis together
with the momentum-space representation of the partial-core and valence densities, which is
usually a very advantageous formulation for pseudopotential calculations.

3.2. Moment–volume curves

The magnetic spin moments per unit cell versus the unit-cell volumes for bcc and fcc iron,
obtained in the LSDA with the MBPP method and the FLAPW method, are shown in
figures 1(b) and 2(b), respectively. The results obtained by the two methods agree very
well. For the bcc crystal the spontaneous spin polarization is stable over the whole volume
range aroundV0 considered, with an equilibrium valueµs(V0) = 2.13 µB (µB is the Bohr
magneton) in close accordance with many previous calculations and with experiment (the
total momentµexp = 2.22 µB with dominant spin and ‘quenched’ orbital contributions of
2.13µB and 0.09µB, respectively [70]) as well.

(The slightly uneven structure of theµ(V ) data, which does not matter for our present
discussion, is an artefact of the sparse IBZ sampling, with only 40 (bcc) and 60 (fcc)
specialk-points and the Gaussian broadening of 0.004 Ryd, and it vanishes for denser
k-point meshes.)

For the fcc crystal, our calculations yield the well-known breakdown of the magnetic
spin moment for volumes smaller thanV0, from a ferromagnetic high-spin (HS) state
via a metastable ferromagnetic low-spin (LS) state to the non-magnetic (NM) state. The
successful description of this magnetic structure change inγ -Fe, which is quite difficult to
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find in unconstrained spin-polarized calculations and can be obtained more easily, e.g., by a
fixed-spin-moment technique [59], provides further support for the assertion that the MBPP
method, in which the spin magnetism is exclusively due to the valence states, is just as
applicable for magnetic systems as the all-electron FLAPW method, in which closed-shell
spin-up and spin-down core states are allowed to react independently to the valence spin
polarization. This allows us to address the magnetic properties of the Fe–H system below
and in parts II and III.

4. Cohesive and magnetic properties of FeH

This section deals with the cohesive properties of the stoichiometric iron monohydrides
FeH in which the H atoms occupy a sublattice of interstitial sites with minimal total energy.
In γ -FeH these are the octahedral sites of the fcc lattice, like in other fcc transition-metal
monohydrides (NiH, PdH; see, e.g., chapter 3 in reference [71]). Inα-FeH, like in other
bcc transition-metal monohydrides (NbH, TaH; see, e.g., chapter 2 in [71]), the H atoms
are located at tetrahedral sites of the bcc lattice.

Table 2. The cohesive parametersV0, E0, B0 andB ′ of non-magnetic (NM) (or low-spin (LS))
and ferromagnetic (FM) (or high-spin (HS)) iron monohydride with face-centred cubic (fcc)
and body-centred cubic (bcc) crystal structure;1E is the energy difference with respect to fcc
FM/HS FeH.

NM/LS FM/HS

Ab initio xc V0 E0 B0 B ′ 1E V0 E0 B0 B ′ 1E

method functional (̊A3) (eV) (GPa) (mRyd) (̊A3) (eV) (GPa) (mRyd)

bcc

MBPP LDA CA 12.87 8.47 238 4.0 51 13.71 8.84 189 3.7 24
BP 13.82 6.50 197 4.2 54 15.02 7.08 150 3.8 11
PW 14.31 6.18 183 4.3 55 15.52 6.76 143 3.9 41

fcc

MBPP LDA CA 11.79 9.12 295 4.1 3 12.44 9.17 216 3.7 0
BP 12.59 7.01 245 4.3 18 13.68 7.24 176 3.9 0
PW 12.98 6.68 233 4.4 17 14.05 6.92 176 4.0 0

FLAPW LDA BH 11.77 8.85 289 4.1 −4 12.32 8.80 200 3.7 0
PW91 12.45 7.21 255 4.3 6 13.55 7.31 165 3.8 0
PW 12.84 6.24 235 4.5 7 13.95 6.32 155 3.9 0

LMTO–ASA LDA CA 11.47 9.28 315 4.1 0 12.03 9.28 213 3.6 0
LDA BH 11.51 9.08 314 4.2 0 12.10 9.08 216 3.7 0
PW 12.55 6.81 250 4.4 13 13.64 6.99 175 3.9 0

4.1. Energy–volume curves

In figure 5(a) the volume dependences of the total energies forα-FeH (with H located at
tetrahedral interstitial sites) and forγ -FeH (H at octahedral sites), calculated in the LDA
by the MBPP method, are displayed. The corresponding cohesive parameters, obtained by
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Figure 5. Equations of state of iron monohydride crystals (fcc with octahedral H, bcc with
tetrahedral H) calculated in the LDA/LSDA (CA) using the MBPP method. The symbols mark
theab initio data points. (a) The energy versus the volume. The lines through the symbols show
the fitted EOS of Roseet al [64, 65]. (b) The ferromagnetic spin moment versus the volume.

fitting the Roseet al EOS [64, 65] to theE(V ) data in the LDA and in the GC LDA, are
listed in table 2.

Comparing the minimum total energies of the two crystal structures, bcc and fcc, in
the three magnetic states, NM, HS and LS, we notice that the previously suggested bcc
iron monohydride is theoretically much higher in energy than the fcc FeH, indicating that
a close-packed structure should be preferred for the formation of a high-concentration FeH
compound (see part II). Hence in the remainder of this section we confine our discussion
to γ -FeH.

Like in the previous section, our MBPP results for the cohesive properties ofγ -FeH
are compared to our corresponding results obtained using the FLAPW and the LMTO–ASA
methods, which are also included in table 2.

Energetically, the ferromagnetic LS state of the monohydride is almost indistinguishable
from the NM state.

The LDA results forV0, E0, B0 andB ′ obtained by the MBPP (CA-xc) and FLAPW
(BH-xc) methods agree excellently for the NM (LS) state, and still very well for the HS state.
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The LDA LMTO–ASA data demonstrate that there is indeed only a marginal difference
between using the CA-xc formula and the BH-xc formula.

Looking at the total-energy differences, however, we find that the NM (LS) state turns
out to be slightly more stable than the HS state by a few millirydbergs in the FLAPW
case, whereas in the MBPP case there is an opposite stabilization of the HS state by about
the same amount, and in the LMTO–ASA case the LS and HS states are energetically
degenerate.

The corresponding situation arises for pure Fe; that is, for the LDA total-energy
difference between fcc NM and bcc FM structures (see table 1), FLAPW and LMTO–
ASA results on one hand agreed (4 mRyd in favour of fcc NM structure) and MBPP results
on the other hand indicated a slightly different value (1 mRyd, but still in favour of fcc
NM structure). Therefore we hesitate to state that the discrepancy for FeH marks a crucial
distinction in favour of the accuracy of one of the methods. Instead we tend to conclude
that it merely illustrates the limit of accuracy inherent to practical implementations of the
different computational representations of the LDA for crystals. A survey of state-of-the-
art ab initio LDA calculations for pure iron (see, e.g., table 4.1 in [9]) yields values for
this energy difference ranging from 8 mRyd in favour of fcc NM structure [72] to even
2 mRyd in favour of bcc NM structure [73], depending on the details of the various LDA
band-structure techniques. Of course, in the limit of a ‘pure’ LDA/LSDA, independent of
any basis-set representation or xc interpolation formula, there should be definitive values
for structural total-energy differences, but at the level of refinement obtained in our study
(see section 2) we are confident in stating that fcc NM and bcc FM states for pure Fe or
fcc NM (LS) and fcc HS states for FeH are almost degenerate in the LDA.

Upon using gradient corrections for FeH, the fcc HS state definitely becomes stabilized
with respect to the fcc LS state according to all three methods, however again with noticeably
different energy gains (for the PW functional, 11 mRyd with the FLAPW method, 17 mRyd
with the MBPP method and 13 mRyd with the LMTO–ASA method). The other cohesive
properties of FeH are modified by the gradient corrections in the same systematic fashion
as was already found for pure Fe in the previous section:V0 andB ′ are increased, andB0

andE0 are reduced, very similarly for the BP and PW91 functionals and more strongly for
the PW functional.

4.2. Moment–volume curves

The volume dependences of the ferromagnetic spin moments per unit cell for the iron
monohydrides are shown in figure 5(b). The moment for bcc FM FeH, like that for bcc FM
Fe, is stable over the whole volume range aroundV0 considered, with a value of similar
magnitude to but slightly larger than 2µB and a slow increase with the volume.

For fcc FeH, the ferromagnetic HS state has noticeably smaller values for the spin
moments than for pure Fe; this is because of the interaction with the interstitial H atoms.
The instability of the HS state upon compression of the volume appears at about the same
crystal volume as in the case of fcc Fe, but this state changes to a different LS state with a
small but finite spin moment of about 0.3µB. This result obtained with the MBPP method
is also found with the FLAPW method; they are in perfect agreement with each other. (With
the LMTO–ASA method, however, we have not succeeded in finding this LS state in the
unrestricted LSDA calculations. If it is not suppressed by the spherical approximation, it
might be found using the fixed-spin-moment technique.)

Summarizing this and the previous sections on the cohesive and magnetic properties of
cubic Fe and FeH, we have demonstrated that these quantities can be described similarly



5096 C Elsässer et al

well using pseudopotentials and a mixed basis or all-electron augmented-basis methods with
or without shape approximations for the crystal potentials. In particular, for quantities like
some of the structural total-energy differences (of few millirydbergs) discussed above, we
hope to have shown by comparison of the results obtained with three methods that none of
these methods seems to be obviously superior to the others. This encourages us to confine
our following presentation to results obtained with the MBPP method and, in part II only, to
results obtained from the more computer resource saving (and, forE(V ) andµ(V ) studies,
in most cases sufficiently accurate) LMTO–ASA method.

5. Electronic structures of Fe and FeH

In this section, results of spin-polarized mixed-basis pseudopotential calculations for the
electronic structures of the valence electrons in Fe and in FeH are presented.

In a recent work, Papaconstantopoulos [74] investigated all transition-metal mono-
hydrides with NaCl structure (i.e., with a fcc lattice of the metal atoms and occupation
of all octahedral interstitial sites of the fcc lattice with H atoms) for their possibilities
of exhibiting a ferromagnetic order, by means of LDA total-energy and band-structure
calculations without spin polarization using the Stoner criterion [75–77]. Of the thirty
metal hydrides considered, CoH was the only one exceeding the Stoner limit for magnetic
instability, while RhH and FeH just failed to reach it by a small amount. In subsequent
calculations for CoH, including spin polarization, Singh and Papaconstantopoulos [78] found
a stable ferromagnetic state with a magnetic spin moment ofµs = 1.16µB per formula unit,
which is smaller than the spin moment of pure Co (µs = 1.62µB) because of the additional
valence electron. However, because of the strong attraction of the interstitial H potential, it
is still considerably larger than the spin moment of isoelectronic Ni (µs = 0.59 µB).

Our spin-polarized calculations yield stable states with ferromagnetic order also for
FeH, whose cohesive properties have been described in the previous section. The electronic
structures of fcc FMγ -Fe andγ -FeH are compared with the results for CoH. Then the
electronic structures of bcc FMα-Fe and of hypotheticalα-FeH are presented.

5.1. H in fccγ -Fe

Fe and FeH with close-packed crystal structures (hcp, dhcp and fcc) are characterized by
very similar cohesive properties. This will be demonstrated in part II. The same observation
holds for their electronic structures, assuming these to be represented by their total densities
of states (DOS). Therefore, in this section, only the DOS for fcc FM Fe and FeH, as
examples representative of the other close-packed structures, are discussed. All the DOS
were calculated for the equilibrium unit-cell volume in the LSDA.

Figure 6(a) shows the DOS of pure fcc FMγ -Fe, a strong ferromagnet like fcc Co,
with completely filled majority d bands but only about half-filled minority d bands.

The major changes in the DOS on the formation of the monohydride FeH are illustrated
in figures 6(b) and 6(c). The additional electron per unit cell contributed by the H atom
causes an upward shift of the Fermi level, increasing the filling of the majority sp bands
slightly and the filling of the minority d bands more strongly. This results in a reduction
of the band splitting, visible as the relative energy shifts of the highest peaks originating
from d states in the spin-up and spin-down DOS, respectively, and a reduction of the total
magnetic spin moment. The strong attractive electrostatic potential of the interstitial proton
causes a splitting off of the lowest band filled with two electrons, whose charge density
is accumulated and almost spherically distributed around the proton (cf. figure 8 below).



Ab initio study of iron and iron hydride: I 5097

Figure 6. Spin-polarized densities of states of ferromagnetic fcc Fe and FeH (upper parts of the
graphs:σ = ↑; lower parts:σ = ↓): (a) fcc FM Fe; (b) fcc HS FeH with octahedral H (NaCl
structure); (c) fcc HS FeH with tetrahedral H (ZnS structure).

Both the shift of the Fermi level and the separated lowest band are characteristic changes
for hydride formation for fcc metals, and have been studied, as reported in the literature,
for many non-magnetic fcc transition-metal hydrides, in particular PdH (cf. chapter 6 of
[4] or [9]). Qualitatively, they can be understood by considering first the necessity to
accommodate one additional electron in the Fermi sea of the metal, and second a charge



5098 C Elsässer et al

transfer from the metal atoms to the more electronegative H atoms.
The reduction of the magnetic spin moment can be explained for the strong ferromagnet

by the fact that all of the majority d states are already full, and that there are more minority
d states than majority sp states just above the Fermi level available to be filled with the
additional electron. Quantitatively the total magnetic spin moments per unit cell (each
at the LSDA equilibrium volume) are reduced fromµpure

s = 2.47 µB for pure γ -Fe to
µoct

s = 1.85 µB and µtet
s = 1.93 µB for FeH with octahedral- and tetrahedral-site H

occupancy, respectively.

5.2. H in bccα-Fe

As mentioned above, there is no experimental evidence for the formation of stable
stoichiometric bcc monohydride FeH. However, a theoretical inspection of the electronic
structure of such a hypothetical compound, which has been carried out recently for the
construction of an adiabatic-potential model for quantum states of dilute H isotopes inα-Fe
[28], is quite instructive qualitatively, for the sake of comparison both with close-packed
FeH treated above and with non-magnetic bcc transition-metal hydrides like NbH, which
has been thoroughly discussed in the literature (cf. reference [79] or reference [9]).

The DOS of pure bcc FMα-Fe, obtained by the MBPP method in the LSDA, is plotted
in figure 7(a), and it is in good agreement with literature results calculated by all-electron
methods. A remarkable difference from the DOS of pure fccγ -Fe, shown in figure 6(a),
is that the Fermi level ofα-Fe is located within both the majority and minority d bands,
characterizingα-Fe as a weak ferromagnet.

The presence of one hydrogen in each one of the tetrahedral and octahedral sites per
Fe atom in the bcc lattice leads to the DOS of the hypothetical monohydrides shown in
figures 7(b) and 7(c). The most obvious qualitative changes from the DOS of pureα-Fe,
i.e., the splitting off of the lowest bands towards lower energies below the d bands and the
upward shift of the Fermi level, are similar to those already described forγ -FeH. The latter
change makesα-FeH a strong ferromagnet again.

Quantitatively, however, there is almost no change of the majority–minority band
splitting, seen as from the relative positions of the highest peaks in the spin-up and spin-
down DOS, and the total magnetic moments per unit cell (again with the LDA equilibrium
volume), µtet

s = 2.17 µB and µoct
s = 2.20 µB for tetrahedral- and octahedral-site H

occupancy, respectively, are even slightly increased over that of pureα-Fe,µpure
s = 2.13µB.

An empirical criterion in the electron theory of metallic materials states that a compound
is likely to be stabilized if the Fermi level passes through a valley of the DOS, i.e. it lies in
an energy range with a small DOS value. Inspecting figures 7(a)–7(c) and assuming that the
partly filled minority d bands are more relevant for the structural stability than the majority
d bands, which are almost or completely filled, we notice that for the stable pureα-Fe the
Fermi level does indeed lie in a narrow valley in the middle of the minority DOS, whereas
for the two FeH compounds it is shifted towards a high peak of the DOS above the valley.
This can be considered as an indication of the instability of the bcc FeH compounds, but
not necessarily a proof, because the band-energy term∫ εF

−∞
D(ε)ε dε

in the total energy is only one of several terms governing the structural energies.
In figures 6(a)–6(c) we see that both for pureγ -Fe and for close-packed FeH, which can

both be stabilized experimentally at high temperatures or pressures, the Fermi level does
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Figure 7. Spin-polarized densities of states of ferromagnetic bcc Fe and FeH (upper parts of
the graphs:σ = ↑; lower parts:σ = ↓): (a) bcc FM Fe; (b) bcc FM FeH with tetrahedral H
(space group D92d); (c) bcc FM FeH with octahedral H (space group D17

4h).

indeed pass through local minima of the minority DOS. For FeH with tetrahedral-site H
occupancy, the Fermi level is slightly shifted away from a local DOS minimum. This can be
taken, in accordance with the criterion above, as an indicator that tetrahedral-site-occupied
FeH is less stable than the actually observed (and predicted by theab initio calculations;
see part III) octahedral-site-occupied FeH. However, we are cautious not to overemphasize
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Figure 8. Cuts through (a) the electron-density difference1ρe(r) and (b) the spin-density
difference1ρs(r) of FeH and Fe in an (001) plane of the bcc crystal lattice. Positions of
Fe atoms at the corners are marked by black circles; the tetrahedral H position is below the
electron-density maximum in (a) or the spin-density dip in (b). The densities are in arbitrary
units.

the predictability of such a subtle effect of the DOS for the structural stabilities of the iron
monohydrides. For instance, the influence of lattice vibrations, which are not considered in
our study, on structural stability is very important at high pressures and temperatures.

Another way of illustrating the electronic structure of iron and its change caused by
the monohydride formation is to look at the real-space electron and spin densities. In the
following we focus on two-dimensional cuts through the three-dimensional densities of bcc
α-Fe andα-FeH with tetrahedral-site H occupancy in an (001) plane of the cubic lattice
passing through Fe atoms.

Figure 8(a) shows such an (001) cut through the electron density (ρe = ρ↑ + ρ↓) of
α-FeH at its LSDA equilibrium volume, from which the electron density of pureα-Fe at
the same volume has been subtracted:

1ρe = ρe(FeH)− ρe(Fe).

This difference in electron density illustrates the distribution of the additional electron
from the H atom and the related redistribution of the eight Fe electrons in the unit cell.
The position of the H nucleus on a tetrahedral site is located below the electron-density
maximum. If no redistribution of the other electrons was caused by the implantation of
the H atom, almost zero density differences should appear at the Fe positions (at the four
corners of the plot), and the electron-density hill centred at the H position should decay
exponentially and contain one electron in total. However, H has a higher electronegativity
than Fe and thus additional electron density is transferred from Fe to H. This transfer is
manifested in figure 8(a) by the negative sign of1ρe around the Fe positions. The aspherical
shape of1ρe around Fe and its spherical shape around H qualitatively indicate the transfer
of electrons from Fe d to H s states, connected with a strong s–d hybridization in the band
structure.

The influence of H on the magnetism of Fe can be seen in figure 8(b) where an (001)
cut through the spin-density (ρs = ρ↑ − ρ↓) difference ofα-FeH and ofα-Fe (both again
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at the same volume, the LSDA equilibrium value ofα-FeH) is plotted:

1ρs = ρs(FeH)− ρs(Fe).

At this theoretical equilibrium volume of FeH, the magnetic moments of FeH and of pure Fe
areµtet

s = 2.17 µB andµpure
s = 2.64 µB, respectively. This means that the strong moment

increase of pure Fe fromµpure
s = 2.13 µB (at its own theoretical equilibrium volume; see

above) caused by the lattice expansion due to H is almost compensated again by the electron-
and spin-density redistributions which tend to reduce the local Fe spin moment. This can
be identified again from the negative sign of1ρs around the Fe positions.

The little dip in1ρs centred at the H position indicates the existence of a small magnetic
spin moment, which is located at the H atom and has an orientation antiparallel to the large
Fe spin moment. (The spin structure of FeH can be envisaged as a ferrimagnetic arrangement
with a dominant Fe-sublattice polarization and a very tiny H-sublattice polarization.)
This local spin polarizationρs(H) can be related to a Fermi contact fieldBFermi of the
magnetic hyperfine interaction at the H-nucleus site, which in its simplest non-relativistic
approximation is proportional toρs(H):

BFermi= −2

3
µ0µBρs(H)

(in SI units, µ0 = 4π × 10−7 V s A−1 m−1 is the magnetic permeability constant,
µB = 9.274× 10−24 A m−2 is the Bohr magneton; the unit ofρs is m−3).

This quantity is susceptible to investigation in experiments (cf., e.g., [80]) and has
been measured quite accurately, e.g. by the muon-spin-rotation technique. Considering the
positive muon,µ+, as a light H isotope and neglecting its spatial delocalization, a measured
value ofBFermi = −1.06± 0.01 T [81] can be compared to calculated values discussed in
the following.

Akai et al [82, 83] calculatedBFermi for one single H atom located at a tetrahedral site
in an infinitely extended Fe crystal using a LSDA Green-function technique. Their result of
−1.03 T agrees perfectly with the experimental one. Using a LSDA cluster method, Ellis
and Lindgren [84] found a value of−1.44 T, noticeably larger than the experimental one,
for one tetrahedral H atom in the middle of a free Fe cluster of finite size.

In order to determineBFermi by the MBPP method we use the protonic Coulomb potential
instead of a pseudopotential for H, which is appropriate for a correct description of the local
spin density at the H site. In contrast to the case for the two quoted calculations,BFermi is
calculated for H in the monohydride FeH. For the different crystal structures (bcc and fcc)
and interstitial H sites (octahedral and tetrahedral), we find similar values ofBFermi at all H
sites:

BFermi= −0.5± 0.1 T.

This value is considerably lower than the experimental one.
To see whether this discrepancy is related to inadequacies of the pseudopotential

technique or the mixed basis, we performed the same calculations for fcc FeH using both
all-electron methods again. The FLAPW calculations yield a value of−0.4 T and this
confirms nicely the accuracy of the MBPP results. The LMTO–ASA calculations, however,
yield −1.0 T, which is in accordance with the finding of Akaiet al [82, 83].

One possibility for explaining this discrepancy between the results forBFermi obtained
by the different methods might be that the muffin-tin potential approximation underlying
the calculations made by Akaiet al is similar to the ASA in the LMTO method, both
leading to higher theoretical values than the FLAPW and MBPP methods, in which no
shape approximations are made for the interstitial region around the H site.
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Thus the discrepancy between the ‘full-potential’ results and experimental results may
be attributed partly to the fact that the calculation was done for the monohydride with
rather closely neighbouring H atoms, whereas the experiment probesBFermi for essentially
one single muon in a macroscopic iron crystal. To prove or disprove this proposal for
the explanation, either a large-supercell calculation to model a low H concentration or a
full-potential extension of the Green-function work of Akaiet al is needed.

Concluding this final discussion, however, one has to bear in mind that both the value
of about one tesla and the discrepancy of about half a tesla are rather small absolute values
for BFermi (cf. reference [85]). Comparing experimental and theoretical values for heavier
interstitial particles in Fe [83], one sees that the absolute differences are typically several
teslas for absolute values of several tens of teslas. Therefore the discrepancy of half a tesla
between the full-potential or pseudopotential FeH results and the experimentalµSR result
for the particular case of H in Fe should perhaps not be overemphasized.

6. Summary

In this work we applied theab initio mixed-basis pseudopotential (MBPP) method to a study
of the cohesion, magnetism and electronic structure of iron and iron monohydride with cubic
crystal structures. The results of spin-unpolarized and of spin-polarized calculations were
thoroughly checked as regards the transferability of norm-conserving ionic pseudopotentials
for the 3d transition metal Fe for spin-polarized cases and the level of accuracy obtainable
with a reasonably large but finite mixed-basis representation of the electron states and
densities.

The application of gradient corrections to the LDA/LSDA in a pseudopotential method
for transition metals and their influence on the cohesive properties of Fe and FeH were
discussed.

Our MBPP results were compared directly with our corresponding all-electron results
obtained using both the FLAPW and the LMTO–ASA methods, indicating some limitations
of the pseudopotential scheme, in particular in connection with gradient corrections, but
a very good overall accordance within the LDA/LSDA. This demonstrates that the MBPP
method is computationally competitive with and comparably accurate to the FLAPW all-
electron method for both non-magnetic transition metals, which is well documented in the
literature, as well as for 3d magnetic transition metals like the ‘worst case’, magnetic iron.
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Appendix A. The free iron atom

In this appendix, the transferability of norm-conserving ionic pseudopotentials for iron,
which are constructed from spin-unpolarized atomic valence-electron states, to a spin-
polarized case is investigated with respect to its sensitivity to the atomic configuration
chosen for the construction (the atomic reference configuration), to the non-linear core–
valence xc interaction (i.e. via the partial-core correction) [37] and to generalized gradient
corrections.

Figure A1. (a) Radial atomic densities and (b) their first derivatives for a free Fe atom in
the LDA. The atomic configuration is [Ar]3d6.64s0.64p0.8. Pseudodensityρv of the valence
electrons: thick solid line; frozen densityρFC of the full core: thin solid line; line styles for
partial-core densities:ρPC1: long-dashed;ρPC2: short-dashed;ρPC3: chain.

As mentioned in section 2, the atomic reference configuration for iron was chosen
following LMTO–ASA results: [Ar]3d6.64s0.64p0.8. Figure A1(a) shows the radial core-
and valence-electron densities for this configuration, together with three different choices
of partial-core densities for the non-linear partial-core correction. The latter are constructed
by replacing the full-core density by a spherical Bessel function inside a radius at which
the core–valence density ratioρc/ρv reaches a given value (PC1, PC2 and PC3 denote the
partial cores cut off atρc/ρv = 1, 2 and 3, respectively).
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A first glance to figure A1 might suggest that it may be hopeless to try to get any
reasonable result with a pseudopotential calculation because of the huge core–valence
density overlap entering the non-linear xc energy density viaεxc(ρc+ρv) if not even the full
frozen-core density is taken into account. This, however, is only easy in a pseudopotential
calculation for a free atom, but not in a crystal if momentum-space techniques [31] are to
be used.

Fortunately, the following results demonstrate that the situation is less serious. One
needs to satisfy only the less stringent requirement that the valence density may not change
strongly due to a different chemical environment in that core–valence overlap region, in
which the full- and the partial-core densities are markedly different. From this argument,
we expect that the partial cores PC2 and PC3 which contain almost the whole outermost
core-electron shells (3s and 3p states) should work similarly well to the full core (FC). This
will be checked in the following.

Table A1. The influence of the partial-core correction in the non-linear ionic pseudopotential
on the energies of a transition [Ar]3d64s2→ [Ar]3d74s1 in a spin-unpolarized or spin-polarized
free iron atom (energies in millirydbergs; for the meaning of∗ and the notation in the first
column, see the main text).

Spin-unpolarized Spin-polarized

LDA BP PW LDA BP PW

AE 83 78 67 −10 −16 −27
FC 88 83 72 −11 −17 −29
PC3 88 83 72 −11 −18 −36∗
PC2 88 83 72 −16 −19 −30
PC1 88 83 72 −62 −64 −77
NC 88 82 72 −161 −162 −163

The influence of the core correction on the total-energy change caused by an electron
transition, [Ar]3d64s2 −→[Ar]3d74s1 (s–d promotion energy), is given in table A1. (Please
note that a FC pseudopotential calculation is not exactly equivalent to an all-electron (AE)
calculation because, instead of an AE valence density, the valence pseudodensity is used
together with an AE core density. Also, no relaxation or spin polarization of the core is
possible, because the frozen spin-unpolarized core of the atomic reference configuration is
retained in other chemical environments.)

First, the positive signs for the spin-unpolarized LDA results indicate that the con-
figuration [Ar]d6s2 is predicted to have a lower energy than [Ar]d7s1, in contrast to reality
and to the LSDA results (negative signs).

Second, we note that, for the spin-unpolarized case, the results are very insensitive to
the core correction. Thus, for spin-unpolarized calculations for iron, the core correction is
not important and a linear pseudopotential, i.e. one without core correction (denoted by NC
for no core in the following), works equally well.

Third, for the spin-polarized case, however, the core correction is essential, and the NC
and PC1 results deviate substantially from the FC ones, whereas the PC2 and PC3 results
become reasonable.

The same conclusions can be drawn from the data in table A2 where spin-polarization
energies, i.e. the energy differences between the non-polarized and spin-polarized calculated
results for the same atomic states, for the two lowest states are listed. All of the findings
up to now hold equally well for LDA and GC calculations.
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Table A2. The influence of the partial-core correction in the non-linear ionic pseudopotential
on the spin-polarization energies for two configurations, [Ar]3d74s1 and [Ar]3d64s2, of a free
iron atom (energies in millirydbergs; for the meaning of∗ and the notation in the first column,
see the main text).

[Ar]3d74s1 [Ar]3d64s2

LDA BP PW LDA BP PW

AE 158 172 157 251 266 252
FC 160 174 161 258 274 262
PC3 161 175 166 260 277 274∗
PC2 164 176 166 268 278 264
PC1 204 213 202 355 360 352
NC 299 303 292 548 548 527

One peculiarity of the spin-polarized PW results should be mentioned. In tables A1 and
A2 the two values for PC3 marked by asterisks deviate slightly from a monotonic behaviour
from NC towards FC. This deviation was traced back to the strong density variation with the
double-hump shape of the PC3 core density (see figure A1(a)), which causes the first and
second density derivatives to vary very strongly as well. The first radial density derivatives
are plotted in figure A1(b). The PW functional turns out to react very strongly to these
strong changes in the density derivatives. Some of this sensitivity stems from the fact that
in the usual partial-core correction the spherical Bessel function and the core density are
matched continuously only in value and slope, leaving a cusp in the first derivative, which
is clearly visible in figure A1 for PC1 and PC3, and a discontinuity in the second derivative
and consequently in the effective potential. However, on matching the second derivative
continuously as well, we found that the total energies and their differences were improved
only marginally. The BP functional, in contrast, does not lead to such a peculiar behaviour.
Hence, we attribute the sensitivity, in accordance with previous experience [86–88], to the
specific analytic form of the PW functional.

Also, for [Ar]3d6.64s0.64p0.8 as the atomic reference configuration, we furthermore
constructed pseudopotentials for the configurations [Ar]3d64s2 and [Ar]3d74s1. All of the
results obtained with these different pseudopotentials for the two lowest atomic states agree
within 5 mRyd for the spin-polarization energies and within 10 mRyd for the s–d promotion
energies. The results for the first reference configuration, which we selected for all of the
crystal calculations, are closest to the AE data.

In previous pseudopotential studies of various materials [89, 87] it has been observed that
it is often not essential to use ionic pseudopotentials constructed from GC atomic states, and
that LDA pseudopotentials are just as accurate for GC calculations for the valence-electron
states. Our study with spin-polarized iron atoms and crystals yielded the same behaviour.
Therefore, all of the LDA and GGA MBPP results for iron crystals reported in this work
were obtained using LDA pseudopotentials (this was found to be justified by means of
extensive tests using GC pseudopotentials as well).

Furthermore, like in various studies of other materials, we found again that self-
consistency in the GC calculations is not essential for obtaining the properties of iron atoms
and crystals considered here. The results from non-self-consistent GC calculations, in which
the self-consistent LDA electron densities are used to calculate the GC total energies, turned
out to coincide so well with those from self-consistent GC calculations that we felt justified
to perform most of the GC pseudopotential calculations using the LDA densities and to
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carry out self-consistent GC calculations only to check and confirm selected results. An
attractive feature of this procedure is that the GC contributions to the total energies and all
derived properties can be nicely separated from the LDA parts to show the influences of
the gradient corrections.

In the MBPP crystal calculations, this behaviour is particularly advantageous, because
an accurate momentum-space representation of second derivatives of the electron densities,
needed for the effective potential in the self-consistency cycles, by Fourier series requires
considerably more effort and resources than obtaining the densities themselves and than
obtaining the first derivatives, which are only needed for the total-energy functional.

All of our reported GC all-electron results on the other hand, which were intended as
references for comparison with the MBPP results, were always obtained self-consistently.

Appendix B. Equations of state

To determine cohesive parameters like the equilibrium volumeV0 of a crystal, the cohesive
energyE0, the bulk modulusB0 and its pressure derivativeB ′ (e.g. for studies of high-
pressure properties of crystals), one commonly calculates total energies as functions of the
unit-cell volumes and then fits an analytic model equation of state (EOS) to theE(V ) data.

In contrast to basis sets containing a fixed number of functions, like the LMTO basis
set and other atom-centred basis sets (LCAO), which yield very smoothE(V ) curves, all
plane-wave and related basis sets like the mixed basis or the LAPW basis may lead to
‘rugged’ E(V ) curves, because the number of basis functions is determined by a kinetic
energy cut-offEpw or Eapw (see section 2) and can change discontinuously with the unit-
cell volume. Besides keeping the ruggedness sufficiently small by using a sufficiently large
value ofEpw, one uses the fit of an EOS to the data to eliminate most of the influence of
the ruggedness on the cohesive properties.

The simplest scheme for obtainingV0 andB0 is a parabola fit, which however is limited
to a narrow region aroundV0 because it cannot account for the anharmonic shape ofE(V ).

The ‘universal binding curve’, an EOS proposed by Roseet al for E(V ) [64, 65], has
been confirmed to be very useful for the description of theoreticalE(V ) curves for many
materials. This EOS contains three free parameters which can be identified withV0, B0 and
E0. V0 marks the minimum position ofE(V ), B0 its curvature atV0 andE0 the cohesive
energy, defined as the energy differenceE0 = E(V = V0)− Ẽ(V →∞). To fit these three
parameters one needs the total energies of the crystal and, additionally, that of a free atom,
Ẽ, as the zero level. The pressure derivative of the bulk modulus,B ′, which is often used
as a measure of the lattice anharmonicity, is not a free parameter, but is completely fixed
by the other three quantities.

A variant of the Roseet al EOS is the ‘universal equation of state’ given by Vinet
et al [90, 91] for p(V ). It has been found reliable for interpolations and extrapolations of
experimental high-pressureV (p) data. Here the three independent fit parameters areV0, B0

andB ′. Integrating the Vinetet al EOS forp(V ) overV once, one gets anE(V ) equation
with the analytic form of the Roseet al EOS, as expected, but then with the integration
constantẼ as a fourth fit parameter. The four parameters can be determined by fitting to
crystalline total energies alone; no atomic total energy is needed. A cohesive energy can
be defined asE0 = E(V0)− Ẽ.

As will be shown below, the comparison of the parameters obtained from the Roseet al
EOS and the Vinetet al EOS will allow a critical judgment of the physical significance of
the fit parameters—that is, ofE0 andB ′.

Two further often-used model EOS are the ones given by Murnaghan [92] and by Birch
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[93]. Here again the fit parameters areV0, B0 and B ′. E0 is not incorporated in these
EOS (like in the case of the parabola), and it is usually determined independently from the
difference between the total energy of the crystal atV0 and that of a free atom.

Table A3. A comparison of cohesive parameters for fcc NM and fcc FM Fe obtained on the
basis of four different equations of state (EOS) (for the meaning of the numbers in parentheses,
see the main text).

EOS

Roseet al Vinet et al Murnaghan Birch
Structure [64, 65] [90, 91] [92] [93]

fcc NM

V0 (Å3) MBPP 9.85 9.85 9.85 9.85
FLAPW 9.70 9.70 9.70 9.70

E0 (eV) MBPP 6.33 6.58 — —
FLAPW 6.33 6.95 — —

B0 (GPa) MBPP 321 321 318 320
FLAPW 342 341 336 340

B ′ MBPP (4.5) 4.5 4.5 4.5
FLAPW (4.6) 4.5 4.5 4.5

fcc FM

V0 (Å3) MBPP 11.21 11.36 11.49 11.43
FLAPW 10.93 10.85 10.99 10.95

E0 (eV) MBPP 6.16 2.28 — —
FLAPW 6.08 4.71 — —

B0 (GPA) MBPP 208 271 349 295
FLAPW 209 193 233 215

B ′ MBPP (4.1) 6.8 11.5 7.5
FLAPW (4.5) 3.9 6.2 4.8

To illustrate the possible influence of the choice of EOS on the cohesive properties, we
choose LDA/LSDA results for fcc NM and fcc FMγ -Fe as an example. The results for
the different fit curves are listed in table A3. The results obtained by using the EOS of
Roseet al for B ′ are given in parentheses because they were not fitted independently, but
are entirely dependent on the other three quantities (see above).

For fcc NM Fe, seven MBPP (six FLAPW) total-energy values surrounding the
minimumV0 approximately symmetrically were included, and the data in table A3 indicate
a rather weak dependence on the choice of EOS.

For fcc FM Fe, however, only total-energy values for volumes larger than the expected
value ofV0 could be used for the fit because of the magnetic instability at smaller volumes.
This asymmetric distribution leads to remarkably large discrepancies between the cohesive
properties obtained by using the different EOS. The EOS of Vinetet al, that of Murnaghan
and that of Birch, which do not fix a free-atom limit, show large differences in the values
that they lead to forB0, B ′ andE0. In particular the value obtained forE0 using the Vinet
et al EOS, which is strictly defined as the difference between the energy of a non-interacting
free atom and that of an atom condensed in a crystal, is not realistic. Furthermore, there is
a strong sensitivity of the fit to the number ofE(V ) data points included (B0, e.g., changes
by several tens of gigapascals on simply including one data point more or less).

In the case of the Roseet al EOS, on the other hand, in which the free-atom limit
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is assumed to be given by the total energy of a spin-polarized, isolated iron atom in its
ground state, the fitting is fairly unambiguous, and the agreement as regards the cohesive
parameters obtained by the MBPP and FLAPW methods is more satisfactory.

The example of fcc FM Fe in the LSDA is of course rather extreme and the ambiguity
of the results for different EOS is much smaller for cases in whichE(V ) data on either side
of V0 can be included in the fit. This is the case for fcc FM Fe when using GC total-energy
functionals.

For the results for the cohesive properties presented in the main text, we carried out fits
to both the Roseet al EOS and the Vinetet al EOS. In critical cases we assumed a higher
reliability of the results obtained with the Roseet al EOS.

Appendix C. Cohesive properties of Nb and Pd

In a previous study by our groups [87, 88], the question of a possible improvement of
accuracy with respect to that of the LDA achieved by the use of gradient corrections in
total-energy calculations for cohesive properties of crystals has been addressed. Meanwhile,
a lively discussion has been proceeding in the literature, with emphatic views expressed for
and against, but a consensus has been approached as regards the systematics of the changes
due to the gradient corrections (i.e. an increase of the equilibrium volumeV0 and a decrease
of the bulk modulusB0 connected with the considerable improvement of a reduction of the
theoretical cohesive energyE0).

Table A4. Equilibrium lattice constantsa0 and bulk moduliB0 for Nb and for Pd, calculated
using the FLAPW method (cf. tables V and VI in reference [87] and table I in [88]).

Nb Pd

a0 (Å) B0 (GPa) a0 (Å) B0 (GPa)

4s/4p core

LDA BH, relativistic 3.31 166 3.88 214
PW, relativistic 3.41 143 4.05 148
PW91, relativistic 3.37 149 3.98 158

4s/4p semicore

LDA BH, relativistic 3.23 179 3.86 217
PW, relativistic 3.34 149 4.04 140
PW91, relativistic 3.29 168 3.96 162

Experiment [95] 3.30 170 3.89 181

Following our work, we encountered some scepticism as regards the rather strong
overcorrection of the equilibrium lattice constantsa0 (or equivalently volumesV0) of 4d
transition metals, in particular of Pd and the surrounding fcc metals, which we determined
using both the MBPP and the LMTO–ASA methods. There were speculations that some
of the overcorrection might be caused by the pseudopotential approximation on one hand,
or might be due to the ASA on the other hand. To test these conjectures, we recalculated
the cohesive properties of both of the 4d transition metals Pd and Nb, using the FLAPW
method, as implemented in the WIEN93 code [40]. Our results are listed in table A4 and
may be compared to the data in tables V and VI of our previous work [87] (see also table
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I in reference [88]).
In the FLAPW calculations, the outermost filled 4s and 4p core shells were treated in

two different ways. First they were included as true core states, strictly confined to the
muffin-tin spheres. The results for this case correspond to the treatment in the LMTO–ASA
calculations of [87], and, except for the lattice superposition of frozen atomic partial-core
densities in the evaluation of the non-linear xc energy density and potential, also in the
MBPP calculations. Second they were treated as band-like semicore states in an energy
panel below and separated from the valence-electron energy range.

We find that the CA and PW results clearly confirm our previous results, and the PW91
results are close to the previous BP results, as expected in view of the similar functional
forms.

The effect of the semicore treatment ona0 andB0 is very weak in the case of Pd, because
the 4s and 4p states are energetically far below the valence bands and well localized at the
single atomic sites. In the case of Nb, however, there is a rather soft outer core, leading
to a considerable contraction ofa0 and increase ofB0 in the LDA. Whereas the core result
for a0 matches almost perfectly the quoted experimental value, the semicore result fora0 is
noticeably too small. The application of the gradient corrections PW and PW91 increases
thea0-values and leads to an overestimation in the core case but to a good coincidence with
experiment in the semicore case.

However, comparing Nb and Pd, we hesitate to conclude from the results for Nb alone
that the semicore treatment and the use of PW91 yields the ultimate result and the best
agreement with experiment, because for Pd, PW91 yields similar overcorrections for the
core case and the semicore case. The soft 4s–4p cores in the transition metals with few
4d electrons are very delicate and we suspect that they may need an even more accurate
treatment than that via a semicore energy panel in the FLAPW method—for instance,
perhaps via including additional local orbitals in the LAPW basis [94], in order to achieve
basis-set-independent accuracy within the LDA or with gradient corrections.
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[69] Elsässer C, Zhu J, Louie S G, Ho K M, Chan C T and F̈ahnle M 1992Bull. Am. Phys. Soc.37 198
[70] Landolt–Börnstein New Series1987 Group III, vol 19a (Berlin: Springer)
[71] Alefeld G and V̈olkl J (ed) 1978Hydrogen in Metals II(Berlin: Springer)
[72] Leung T C, Chan C T and Harmon B N 1991Phys. Rev.B 44 2923
[73] MacLaren J M, Clougherty D P and Albers R C 1990Phys. Rev.B 42 3205



Ab initio study of iron and iron hydride: I 5111

[74] Papaconstantopoulos D A 1991Europhys. Lett.15 621
[75] Stoner E C 1938Proc. R. Soc.A 165 372
[76] Wohlfarth E P 1953Rev. Mod. Phys.25 211
[77] Vosko S H and Perdew J P 1975Can. J. Phys.53 1325
[78] Singh D J and Papaconstantopoulos D A 1994Phys. Rev.B 49 12 801
[79] Philipp S, Leiberich R, Schmidt P C and Weiss A 1993Intermetallics1 227
[80] Seeger A and Schimmele L 1992Perspectives of Meson Scienceed T Yamazaki, K Nakai and K Nagamine

(Amsterdam: Elsevier) p 293
[81] Staiger W 1990DoktorarbeitUniversiẗat Stuttgart
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[88] Garćıa A, Els̈asser C, Zhu J, Louie S G and Cohen M L 1993 Phys. Rev.B 47 4150 (erratum to [87])
[89] Kong X J, Chan C T, Ho K M and Ye Y Y 1990Phys. Rev.B 42 9357
[90] Vinet P, Ferrante J, Smith J R and Rose J H 1986J. Phys. C: Solid State Phys.19 L467
[91] Vinet P, Rose J H, Ferrante J and Smith J R 1989J. Phys.: Condens. Matter1 1941
[92] Murnaghan F D 1951Finite Deformation of an Elastic Solid(New York: Wiley)
[93] Birch F 1952J. Geophys. Res.457 227
[94] Singh D 1991Phys. Rev.B 43 6388
[95] Kittel C 1986 Introduction to Solid State Physics(New York: Wiley)
[96] Zarestky J and Stassis C 1987Phys. Rev.B 35 4500


